

2024 Dominik Hangleiter

CC-BY-NC

4.0

V S rXiv:2312.101 Π

HIDING SECRETS IN IQP CIRCUITS

A drama in three acts

Dominik Hangleiter

with David Gross

Arlington, June 11, 2024

Verifying quantum advantage

Verifying quantum advantage

Quantum random sampling

 $\bigcup \in \{\mathsf{C}_0,\ldots,\mathsf{C}_N\}$

Quantum random sampling

Quantum random sampling

Classical simulations are *provably* inefficient.

Can we efficiently verify quantum sampling?

ACT I Dan and Mick have an idea

X-programs

X program [SB09]
→ Angle
$$\theta$$

→ $\mathbf{P} \in \{\mathbf{0}, \mathbf{1}\}^{m \times n}$
→ $H_{\mathbf{P}} = \sum_{i} \left(\prod_{j} X_{j}^{\mathbf{P}_{ij}}\right)$

X-programs

X-programs

Example

$$\mathbf{P} = \begin{pmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{pmatrix} \qquad H_{\mathbf{P}} = X_2 X_3 + X_1 X_2 X_3 + X_1 X_2 X_3 X_4 + X_2 + X_1 X_3 X_4$$

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different *X*-program with double angle

$$eta_{s} = \langle Z_{s}
angle = \langle 0 | e^{i 2 heta H_{\mathsf{P}s}} | 0
angle$$
, where $(\mathsf{P}_{s})_{i} = \mathsf{P}_{i}$ iff $\mathsf{P}_{i} \cdot s = 1$.

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different *X*-program with double angle

$$eta_{s} = \langle Z_{s} \rangle = \langle 0 | e^{i 2 \theta H_{P_{s}}} | 0 \rangle$$
, where $(P_{s})_{i} = P_{i}$ iff $P_{i} \cdot s = 1$.

- For $heta=\pi/4$, an X-program is a Clifford circuit.
- Can compute Fourier coefficients for hard circuits with $\theta = \pi/8$.
- Sampling from random X programs with $\theta = \pi/8$ is classically hard.

The double angle trick [SB09,She10]

Fourier coefficients are given by the zero-amplitude of a different *X*-program with double angle

$$eta_{s} = \langle Z_{s}
angle = \langle 0 | e^{i 2 \theta H_{P_{s}}} | 0
angle$$
, where $(P_{s})_{i} = P_{i}$ iff $P_{i} \cdot s = 1$.

- For $heta=\pi/4$, an X-program is a Clifford circuit.
- > Can compute Fourier coefficients for hard circuits with $\theta = \pi/8$.
- Sampling from random X programs with $heta=\pi/8$ is classically hard.

The coding theory trick [SB09,She10]

$$\langle 0|e^{i\pi/4H_{P}}|0\rangle = \begin{cases} 2^{-rank(P^{T}P)/2} & col(P) \cap col(P)^{\perp} \text{ is doubly even} \\ 0 & else \end{cases}$$

Dan and Mick's tricks

The double angle trick [SB09,She10] Fourier coefficients are given by the zero-amplitude of a different Xprogram with double angle $\beta = /7 \setminus = /0 |ai2\theta H_{Ps}|0\rangle$ where $(\mathbf{P}_s)_i = \mathbf{P}_i$ iff $\mathbf{P}_i \cdot s = 1$. For random **P**, rank($\mathbf{P}^T \mathbf{P}$) ~ *n* lifford circuit. \rightarrow For most s, $\beta_s \leq 2^{-n}$; for hard circuits with $heta=\pi/$ 8. x programs with $\theta = \pi/8$ is classically hard. na from random The coding theory trick [3809,She10] $2^{-\operatorname{rank}(\mathbf{P}^{\mathsf{T}}\mathbf{P})/2}$ $\langle 0| {
m e}^{i \pi/4 H_{
m P}} | 0
angle =$ $\operatorname{col}(\mathbf{P})\cap\operatorname{col}(\mathbf{P})^{\perp}$ is doubly even else

Dan and Mick's tricks

\rightarrow Understand rank($\mathbf{P}_{s}^{T}\mathbf{P}_{s}$)

 \rightarrow **P**_s^T**P**_s is the Gram matrix describing the geometry of col(**P**_s)

```
Understand rank(P<sup>T</sup><sub>s</sub>P<sub>s</sub>)
```

 \rightarrow **P**_s^T**P**_s is the Gram matrix describing the geometry of col(**P**_s)

[BS09] choose **D** as a quadratic residue code (radical is doubly even).

[BS09] choose D as a quadratic residue code (radical is doubly even).

The output distribution of $(\mathbf{P}, \pi/\mathbf{8})$ has $\beta_s = 1/\sqrt{2}$

ACT II Greg is a killjoy but IQP comes back

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in \operatorname{rad}(\operatorname{col}(\mathbf{P}_s)) \implies s \in \ker(\mathbf{P}_d^T \mathbf{P}_d).$

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in \operatorname{rad}(\operatorname{col}(\mathbf{P}_s)) \Rightarrow s \in \ker(\mathbf{P}_d^T \mathbf{P}_d).$

Attack 1 Draw *d* randomly. 2 Iterate through the elements $t \in \ker \mathbf{G}_d$ and check if \mathbf{P}_t generates a QRC.

Greg's trick [Kah19]

For $d \in \mathbb{F}_2^n : \mathbf{P}_s d \in \operatorname{rad}(\operatorname{col}(\mathbf{P}_s)) \Rightarrow s \in \ker(\mathbf{P}_d^T \mathbf{P}_d).$

Attack 1 Draw *d* randomly. 2 Iterate through the elements $t \in \ker \mathbf{G}_d$ and check if \mathbf{P}_t generates a QRC.

With probability 2<sup>-rank(P^T_sP_s) s lies in ker P^T_dP_d.
 For the [SB09] QRC construction ker P^T_dP_d is typically small (2^{n-m/2} elements).
</sup>

2024 Dominik Hangleiter | CC-BY-NC

4.0

[BCJ23] Bremner, Cheng, Ji, arXiv:2308.07152.

ACT III Hope for IQP is waning

column operations.

 \rightarrow If range[**B**|**C**] = $\mathbb{F}_2^{m_2}$, can 'clear' columns below [F|D].

radical of H!

Range is unchanged under Imm operations. If range $[\mathbf{B}|\mathbf{C}] = \mathbb{F}_2^{m_2}$, can ar' columns below $[\mathbf{F}|\mathbf{D}]$. Elements of D' are in the cal of H! The support of $col(\mathbf{D}')$ deter-VC 4 mines the secret.

→ Range is unchanged under column operations.

 \rightarrow If range[**B**|**C**] = $\mathbb{F}_2^{m_2}$, can 'clear' columns below [**F**|**D**].

→ Elements of D' are in the radical of H!

 \rightarrow The support of col(D') deter-

More attacks

Valleys of opportunity!

More attacks

Ь

The Lazy Meyer Attack: Only search small kernels

The Lazy Meyer Attack: Only search small kernels

More attacks

The Lazy Meyer Attack: Only search small kernels

The **Double Meyer Attack:** Take kernel intersections to make the search space smaller \bigcirc

More attacks

The Lazy Meyer Attack: Only search small kernels

The **Double Meyer Attack**: Take kernel intersections to make the search space smaller \bigcirc_{1}^{1}

→ Hamming's razor: identify redundant rows by exploiting that there are no low-weight Hamming strings in the image of the secret space.

THEEND

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- → Can we apply similar ideas to universal circuits?
- Can we hide peaks in the output distribution of a circuit? [Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- → Can we apply similar ideas to universal circuits?
- Can we hide peaks in the output distribution of a circuit? [Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- → Can we apply similar ideas to universal circuits?
- Can we hide peaks in the output distribution of a circuit? [Aaronson-Zhang-24]

Hiding secrets

- → Can large Fourier coefficients of IQP be efficiently estimated?
- → Nonlinear tests?
- → Can we apply similar ideas to universal circuits?
- Can we hide peaks in the output distribution of a circuit? [Aaronson-Zhang-24]

Using interaction

→ Are there less structured interactive schemes?
 → E.g. mid-circuit measurements in a random circuit with a little bit of structure?